FlowTGE: Automating Functional Testing of
Executable Business Process Models Based on
BPMN

1[0000—0002—5454—2927] and SéI‘glO
1,2,3[0000—0002—8627—3338]

Tomés Lopes
Guerreiro

! Link Consulting SA, Av. Duque de Avila 23, 1000-138 Lisbon, Portugal
{tomas.lopes,sergio.guerreiro}@linkconsulting.com
2 INESC-ID, R. Alves Redol 9, 1000-029 Lisbon, Portugal
3 Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
sergio.guerreiro@tecnico.ulisboa.pt

Abstract. Testing business process models is vital for guaranteeing the
correct operation of processes and ensuring they comply with require-
ments and regulatory norms. Often performed manually, automating
process model testing expedites testing efforts and reduces human error.
This paper presents FlowTGE, a tool for end-to-end black/gray-box test-
ing of executable business process models based on the BPMN language.
This tool is built on top of the bPERFECT framework and is designed
to tackle the slow and error-prone nature of manual process testing in
the context of workflow automation systems. FlowTGE is split into two
components — the Generator and the Executor — which, respectively,
handle the automated generation of test cases from executable BPMN-
based process models and the execution of said test cases through process
simulations using workflow automation functionalities. Evaluation shows
promising results regarding user perceptions of usefulness and ease of use
and demonstrates the tool’s suitability to be applied to a significant por-
tion of process-testing-related challenges.

Keywords: BPMN - Business process - Test automation - Business pro-
cess management - Business process testing - Model-based testing

1 Introduction

Business processes lie at the core of organizations [11]. Defined as “a collection of
inter-related events, activities, and decision points that involve a number of ac-
tors and objects, which collectively lead to an outcome that is of value to at least
one customer” [3], the efficiency and effectiveness of business processes directly
influence customer experience and the quality of organizational outputs [11].
Business Process Management (BPM) often relies on using process models
that represent people’s understanding of how work is done, abstracting away
unimportant details. A process model describes all the different ways to execute
a business process, differing from the notion of a process instance which consists

2 Tomas Lopes and Sérgio Guerreiro

of one specific execution of a process [3]. Several languages may be used to
represent process models, with the most common one being the Business Process
Model and Notation (BPMN) language, often regarded as the de facto standard
for process modeling.

Technological and organizational growth has led to a massive hike in the com-
plexity of business processes. Maintaining their correctness and compliance with
established requirements has become a significant challenge for companies [5].
Business Process Testing (BPT) activities have become essential in guaranteeing
that processes continue to bring value as they evolve [5].

Furthermore, the executability of these models has become a critical aspect
of BPM, as it determines the extent to which a process can be automated and
executed through implementation in BPM systems or other process-aware infor-
mation systems [3]. BPM systems use process models to guide the flow of work,
automatically routing work items to the appropriate people and systems at each
step of the process with capabilities for monitoring and process analysis [3].

The main goal of this paper is to discuss the design and implementation
of the FlowTGE tool, an automated functional testing solution for assessing
BPMN-based executable business process models. Three basic requirements are
set: (i) automatically generate test cases from executable process models based
on BPMN, (ii) execute process test cases, and (iii) produce easily interpretable
test case execution reports.

2 Related Work

A literature review about BPT was recently published, which summarizes and
analyzes over 30 studies detailing different approaches and techniques for pro-
cess testing and verification, focusing on the BPMN language [5]. Many studies
reviewed in this paper describe specific testing-related techniques that may be
adapted and combined to create a more sophisticated all-encompassing solution:

— [2,6,9,13,14] describe different ways to transform BPMN models into more

elementary graph-like structures which facilitate further analysis, namely

path discovery.

[10,12-14] use a Depth-First Search (DFS) based path discovery algorithm

to extract the existing execution scenarios from a process.

— [8] implement a recursion delimiter that controls the number of times a given
sequence flow may be executed in any given execution scenario.

— [8,14] use a simple tabular format to represent test cases and execution
scenarios. These tables contain information such as the corresponding path,
pre-conditions, inputs, and post-conditions.

Combining and adapting these techniques shows considerable potential to
create new and disruptive BPT solutions. This literature review also proposes a
simple classification system for BPT types, as follows [5]:

— Black/gray-box: used to verify basic functional requirements,

Automating Functional Testing of BPMN-Based Executable Process Models 3

— Regression: used to test potentially breaking changes, and
— Integration: used to test specific service-related implementation details

Finally, this review proposes the Business Process Evaluation and Research
Framework for Enhancement and Continuous Testing (b PERFECT) framework
that aims to guide BPT research, consisting of a series of high-level instructions
that all future BPT approaches should follow to facilitate knowledge sharing
and boost interoperability and intercompatibility [5]: (i) model the process, (ii)
determine constraints, (iii) convert to graph structure, (iv) extract paths, (v)
determine test data, (vi) determine testing type, (vii) generate test cases, and
(viii) execute test cases.

The classification of testing types, the bPPERFECT framework, and the anal-
ysis of several existing BPT-related techniques constitute a solid starting point
for developing new and innovative solutions that provide added functionality
and extend the scope of current BPT approaches.

3 Flow Test Generation and Execution

This section describes the architectural and implementation details of Flow Test
Generation and Execution (FlowTGE), an end-to-end black/gray-box business
process model testing tool with the capability of automating key parts of the
assessment of the correctness of executable process models and providing insights
for their improvement.

FlowTGE is designed to automate many steps associated with end-to-end
process model testing, including execution scenario determination, test data gen-
eration, and test execution. The use of bPERFECT as a reference framework
ensures that it is aligned with existing BPT methodologies while also following
the best practices in the field.

FlowTGE is split into two components: the Generator and the Executor.
Each of these two components is made up of 3-4 core sub-components which are
run sequentially to achieve the desired objective.

Table 1 shows the correspondence between bPERFECT steps, specific tech-
niques used in FlowTGE, and the studies from which those techniques were
adapted.

3.1 Generator

The Generator is the component of FlowTGE that takes care of everything
related to the generation of test cases from process models.

The Generator receives a business process model as input and outputs a
set of test cases. Each test case consists of a sequence of detailed steps (such
as “Actor A assigns variable X during Task T” or “Actor A executes Task T,
meeting constraint C”) which, when followed, lead to the successful termination
of the process, per the model.

The Generator comprises four core sub-components — BPMN-to-Graph, Path
Extractor, Constraint Extractor, and Test Case Writer. The core sub-components

4 Tomas Lopes and Sérgio Guerreiro

Table 1. Mapping from bPERFECT steps to specific techniques used in FlowTGE.

bPERFECT steps FlowTGE techniques References

1. Model the process Model using BPMN variant -

2. Determine constraints Parse conditions from sequence flows —

3. Convert to graph Convert to directed graph [2,6,9,13,14]
4. Extract paths Apply adapted DFS [8,10,12-14]
5. Determine test data Use constraint solver [8, 14]

6. Determine testing type Perform black/gray-box testing [1,8,13,14]
7. Generate test cases Write in tabular format 8, 14]

8. Execute test cases Simulate using API -

are run sequentially, each taking as input some of the outputs produced by the
sub-components run beforehand.

BPMN-to-Graph The BPMN-to-Graph sub-component, as the name sug-
gests, handles the transformation of the process model into a (directed) graph.

To accomplish this, the model’s sequence flows are parsed from the BPMN
XML file. Each sequence flow contains a source reference and a target reference
which may each be a task, an event, or a gateway. The set of all sequence flows
constitutes the edges of the graph, and the union of all source references and all
target references constitutes the nodes of the graph. Collapsed subprocess nodes
are recursively substituted by the corresponding process graphs.

Path Extractor The Path Extractor sub-component computes all desired
paths from the start node to the end node(s) in the graph outputted by the
previous sub-component. In this context, a “path” refers to a single end-to-end
execution scenario that is valid per the model. Since these may include parallel
activities, one path may actually include several parallel sub-paths.

Beginning with the start event node, a DFS is used to recursively explore
each node’s successors, updating a visited dictionary that keeps track of the
number of times each node has been visited in the path currently being explored.
A parameter controls how many times any specific node may be visited, allowing
the exploration of cycles. Upon reaching an end event, the path is added to a
list and the search backtracks, exploring paths via other successors until there
are no more alternatives.

After the initial path extraction, a parallel sub-path merging operation be-
tween paths that contain the same AND-split node is performed which, under
the assumption that there are no race conditions between branches that may
execute in parallel, sequentializes parallel tasks.

Constraint Extractor The Constraint Extractor sub-component determines
which constraints must apply for each path to be followed.

Automating Functional Testing of BPMN-Based Executable Process Models 5

For each path, this sub-component of FlowTGE parses the constraints stored
as edge data (sequence flow labels) and stores them in a TestDatum object con-
taining a path and a collection of constraints. Each constraint is associated with
the task where it must be satisfied to proceed with the test case (see Figure 1).

Path Constraints
SE
TaskA
_JaskB.y x>0
Gl
TaskC
EE

X must be

greater than 0

upon completing

TaskB

Fields F1:
X - Number

Fig. 1. Extracting constraints from a path.

Test Case Writer Finally, the Test Case Writer generates the test cases based
on the acquired information about the possible flows. One test case is generated
for each path, representing one possible execution scenario for the process.

Each test case consists of pre-conditions, a sequence of execution steps, and
post-conditions. The execution steps are displayed in the test case in tabular
form, as done first by [8,14]. Each step may be of one of three different types:
(i) Instantiate process, (ii) Assign variable, or (iii) Ezecute task.

3.2 Executor

The Executor is the component of FlowTGE that handles the execution of test
cases generated from business process models. Before execution, test data is also
generated for each test case based on the associated constraints.

This component receives a set of test cases as input and outputs relevant
information about the execution of the tests. Test execution data includes aspects
such as passing and failed tests, reasons for failure, and execution time.

Similarly to the Generator, the Executor’s three core sub-components — Pre-
Processor, Solution Mapper, and Test Case Simulator — are run sequentially.

Pre-Processor The Pre-Processor parses the test case specifications and pro-
duces additional information about the variables and constraints that may not
be explicit in the tests. The tasks performed by this sub-component include
variable parsing, constraint parsing, and variable domain estimation.

Solution Mapper The Solution Mapper sub-component determines possible
values for the variables involved in each test case that meet all the constraints
specified for said test case.

6 Tomas Lopes and Sérgio Guerreiro

In order to support arbitrarily complex constraints, a constraint solver was
used for this task, similar to the approach presented by [4] and proposed by [12].
More specifically, Microsoft’s Z3 Theorem Prover*, an SMT solver (a general-
ization of classic Boolean satisfiability / SAT) with bindings for programming
languages like Python and C#, was used for this purpose. Each test case’s con-
straints (including implicit ones derived by the previous sub-component) are,
thus, converted to Z3 Boolean expressions and added to a solving model which,
upon calling the Solve method, returns one possible value for each variable
(Status.SATISFIABLE). Alternatively, if the constraints are incompatible, the
solver returns Status.UNSATISFIABLE; if that happens, the test case is skipped.

Test Case Simulator The Test Case Simulator handles the execution (through
simulation) of the test cases and collects data concerning this execution.

The implementation of this execution mechanism differs significantly depend-
ing on the workflow engine being used to execute the process models. In the cur-
rent implementation, edoclink, a document management system implemented,
commercialized, and maintained by Link Consulting, S.A. designed around work-
flow automation, is used for that purpose. As such, the execution of test case
steps is achieved using the edoclink Public API. This component may be adapted
to support other BPM /workflow automation systems.

If any step of a test case fails to execute, that test case is interrupted and
marked as failed. Executing every step of a test case with no errors corresponds
to a successful test case.

Users have access to information regarding not just the number of failures
but also the reasons for failure. This information, combined with other results
and metrics such as execution time, enables the extraction of insights that may
be used to correct and enhance the process model.

After executing all test cases, an execution report is generated and presented
to the user. This execution report contains all execution data collected for all
tests executed, such as (i) a statistical overview of the outcomes of all test cases,
(ii) total execution time and execution time per test case, (iii) the values assigned
to each variable, and (iv) reasons for failure of each test case (if applicable). The
insights extracted from this information facilitate the correction and enhance-
ment of the process model.

4 Evaluation

This section contains all the evaluation procedures carried out to assess end user
perceptions of FlowTGE.

4.1 Methodology

To assess the efficiency of the tool, process models with varying amounts of
paths were procedurally generated by sequentially chaining cycles. Models were

* https://www.microsoft.com/en-us/research /project/z3-3/

Automating Functional Testing of BPMN-Based Executable Process Models 7

generated using this method for each possible value of n from 0 (1 path) to
16 (65536 paths using the max mode) and execution times for both components
were measured. This experiment showed exponential time and space growth with
respect to the number of cycles (as expected by the exponential growth of the
number of paths) and linear time and space growth with respect to the number
of execution steps, with the Generator being able to generate over 200 execution
steps per second.

The main focus of this evaluation, however, consisted of assessing end user
perceptions of the tool regarding usefulness and ease of use. On account of this,
eight workers at Link Consulting with prior process testing experience were asked
to participate in an experiment.

The experiment consisted of users being asked to detect errors in four process
models (with deliberately introduced errors) adapted from previous projects by
interacting with the Generator to generate the test cases (with the number of
paths for each model varying between 5 and 34), interacting with the Executor
to execute them, and analyzing the execution reports.

They were then asked to fill out a survey with eight items, each concern-
ing one of three perception-related constructs of Moody’s Method Evaluation
Model [7]: (i) Perceived Ease of Use, (ii) Perceived Usefulness, and (iii) Inten-
tion to Use. A 5-point Likert scale was used to measure each item, reversing the
score of negatively worded items (I3, 14, I5, I7) to enable the calculation of nu-
merical measures. Respondents were able to answer each item for the Generator
and the Executor independently. Items were shuffled for each respondent, with
each one focusing on one of the three perception-related constructs of the model:

I1 T found the tool easy to learn. (Perceived ease of use)

I2 This tool makes it easier to spot errors in process models. (Perceived useful-
ness)

I3 I found the tool difficult to utilize. (Perceived ease of use)

I4 Overall, I think this tool does not effectively solve the problem of manually
testing large process models being time-consuming and error-prone. (Per-
ceived usefulness)

I5 T would not use this tool to test large process models. (Intention to use)

16 I believe this tool would reduce the effort needed to test large process models.
(Perceived usefulness)

I7 The overall procedure for utilizing this tool is complex. (Perceived ease of
use)

I8 I plan on using this tool to test processes over manual testing. (Intention to
use)

Both components of FlowTGE were deployed in internal environments for
end user validation and logs were used to verify user interaction with both of
the tool’s components.

4.2 Results

The results of the survey carried out concerning user perceptions can be vi-
sualized in Figure 2 as box-and-whisker diagrams plotted for each tool/model

8 Tomas Lopes and Sérgio Guerreiro

construct pair, where the blue whiskers represent the minimum and maximum
scores for that item, the edges of the blue boxes represent the first and third
quartiles, and the green horizontal bars represent the second quartiles (the me-
dians). Additionally, mean scores were plotted as black dots with black labels.

5
475
450 4.58
417
e

3.96

T T T T T T T
Generator: Generator: Generator: Executor: Executor: Executor:
Perceived Perceived Intention Perceived Perceived Intention
ease of use usefulness to use ease of use usefulness to use

Fig. 2. Box plots of survey scores for each tool/construct pair.

Scores for perceived ease of use were nearly perfect, with both mean scores
greater than 4.5 and very little divergence in answers, which likely stems from
the lack of effort required from users to use the tool (usage consists of simply
pressing one to two buttons and, in the case of the Executor, filling out a simple
form, with all of the work being done by the tool in the background).

Scores for items concerning perceived usefulness were still quite positive, al-
beit taking a noticeable hit when compared to the items concerning perceived
ease of use. Furthermore, larger interquartile ranges for most items indicate a
larger degree of divergence between respondents. It is also worth noting that
scores for the Generator are slightly higher than for the Executor. Hence, de-
spite results still being positive, they show mild concerns regarding the tool’s
practicality and adequacy at solving the problem at hand.

Finally, as for intention to use, although scores for both the Generator and
the Executor can still be considered quite positive, similarly to what happens
for perceived usefulness, scores for the Generator are noticeably higher than the
Executor’s. Respondents showed great intent on continuing to use the Genera-
tor, which already brings value independently, while showing some skepticism
towards using the Executor, which depends on the Generator to function.

Further conversations with the respondents were carried out with the intent
of analyzing why scores for the Executor were lower across the board. Two main
limitations regarding the Executor were gathered. Firstly, variables with complex
data types are unsupported by the Executor’s Solution Mapper, leading to the
need for manual assignment of field values or process model refactoring efforts

Automating Functional Testing of BPMN-Based Executable Process Models 9

(removing variables with those data types) to execute test cases for processes
containing variables with such data types. Additionally, flexible processes that
allow the execution of activities in an ad hoc fashion cannot be comprehensively
tested using FlowTGE. Overall, users seemed keen on using the Generator to
derive the valid execution scenarios from a model, showing intent to use the Ex-
ecutor to test critical execution scenarios while opting to validate the remaining
execution scenarios solely based on the content of the test cases themselves.

The evaluation carried out poses some limitations. Namely, the number of
participating users (constrained by the reduced number of employees involved
in process testing) is quite small, leading to low statistical power. Furthermore,
previous user experience with similar tools designed to facilitate and accelerate
process model testing was not measured. Vagueness and possible ambiguity of
terms used in the survey items may have also impacted the reliability of the
findings.

In any case, evaluation results provide an optimistic outlook on user im-
pressions and intentions, with FlowTGE’s functionality successfully fulfilling its
objectives while showing great potential for further improvements.

5 Conclusion

This paper presents FlowTGE, a two-component tool that can accelerate and
improve the testing of executable BPMN-based process model testing by au-
tomating critical tasks typically done manually. Namely, FlowTGE can auto-
matically generate and execute test cases from business process models, thus
helping to ensure the proper operation of the processes and reducing manual
process testing efforts.

As of writing this paper, the tool is being used internally at Link Consulting
and has been integrated with its process management tool suite (Atlas and
edoclink). Both components of FlowTGE are already in use today in the context
of process management and business consulting projects.

In future work, the tool will be extended to tackle the limitations pinpointed
during evaluation, namely its inability to deal with complex data types. Addi-
tionally, the constant context switching involved in a typical process build/test
loop leaves an opportunity to improve the cohesion of such activities through,
for instance, the creation of a common environment for modeling and testing.

Acknowledgment

This work was supported by a pre-registered project, named as eProcess, which
is under national funds with reference C669314338-00003137 (LINK CONSULT-
ING - TECNOLOGIAS DE INFORMACAO S.A.).

References

1. Buchs, D., Lucio, L., Chen, A.: Model checking techniques for test generation
from business process models. In: Reliable Software Technologies — Ada-Europe

10

10.

11.

12.

13.

14.

Tomés Lopes and Sérgio Guerreiro

2009: 14th Ada-Europe International Conference on Reliable Software Technolo-
gies, Brest, France, June 8-12, 2009, Proceedings. pp. 59-74. Springer, Brest, France
(2009). https://doi.org/10.1007/978-3-642-01924-1_5

Dechsupa, C., Vatanawood, W., Thongtak, A.: An automated framework for
BPMN model verification achieving branch coverage. Engineering Journal-
Thailand 25(2), 135-150 (2021). https://doi.org/10.4186/ej.2021.25.2.135
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Berlin, Germany (2018)

Jahan, H., Rao, S., Liu, D.: Test case generation for BPEL-based web service
composition using colored Petri nets. In: 2016 International Conference on Progress
in Informatics and Computing (PIC 2016). pp. 623-628. IEEE, Shanghai, China
(2016). https://doi.org/10.1109/PIC.2016.7949575

Lopes, T., Guerreiro, S.: Assessing business process models: a literature review on
techniques for BPMN testing and formal verification. Business Process Manage-
ment Journal 29(8), 133-162 (2023). https://doi.org/10.1108/BPMJ-11-2022-0557
Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: An approach for
the transformation and verification of BPMN models to colored Petri nets
models. International Journal of Software Innovation 8(1), 17-49 (2020).
https://doi.org/10.4018 /1JS1.2020010102

Moody, D.: The Method Evaluation Model: a theoretical model for validating infor-
mation systems design methods. In: Proceedings of the 11th European Conference
on Information Systems, ECIS 2003, Naples, Italy 16-21 June 2003. Naples, Italy
(2003), https://aisel.aisnet.org/ecis2003 /79

de Moura, J.L., Chardo, A.S., Lima, J.C.D., de Oliveira Stein, B.: Test case
generation from BPMN models for automated testing of web-based BPM ap-
plications. In: 2017 17th International Conference on Computational Science
and Its Applications (ICCSA 2017). pp. 1-7. IEEE, Trieste, Italy (2017).
https://doi.org/10.1109/ICCSA.2017.7999652

Nazaruka, E., Ovchinnikova, V., Alksnis, G., Sukovskis, U.: Verification of BPMN
model functional completeness by using the Topological Functioning Model. In:
ENASE 2016: Proceedings of the 11th International Conference on Evaluation
of Novel Software Approaches to Software Engineering. pp. 349-358. SciTePress,
Rome, Italy (2016). https://doi.org/10.5220/0005930903490358

Paiva, A.C.R., Flores, N.H., Faria, J.P., Marques, J.M.G.: End-to-end automatic
business process validation. Procedia Computer Science 130, 999-1004 (2018).
https://doi.org/10.1016/j.procs.2018.04.104

Rosemann, M.: Foreword, 2018. In M. Dumas, M. L. Rosa, J. Mendling, and
H. A. Reijers, Fundamentals of Business Process Management. Berlin, Germany:
Springer, 2018, pp. vii-viii

Schneid, K., Stapper, L., Thoéne, S., Kuchen, H.: Automated regression
tests: a mno-code approach for BPMN-based Process-Driven Applications.
In: 2021 IEEE 25th International Enterprise Distributed Object Comput-
ing Conference (EDOC). pp. 31-40. IEEE, Gold Coast, Australia (2021).
https://doi.org/10.1109/EDOC52215.2021.00014

Seqerloo, A.Y., Amiri, M.J., Parsa, S., Koupaee, M.: Automatic test cases genera-
tion from business process models. Requirements Engineering 24, 119-132 (2019).
https://doi.org/10.1007 /s00766-018-0304-3

Yotyawilai, P., Suwannasart, T.: Design of a tool for generating test
cases from BPMN. In: 2014 International Conference on Data and Soft-
ware Engineering (ICODSE). pp. 1-6. IEEE, Bandung, Indonesia (2014).
https://doi.org/10.1109/ICODSE.2014.7062692

