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Abstract. Conformance checking is a process mining task where
observed process executions are compared with the conduct prescribed
by a process model. Even in the case where multiple parties interact
in the process, it is typically assumed that the process itself provides a
monolithic, global description of the overall, expected behaviour. How-
ever, it may very well be the case that such a global process is not
explicitly available, and that each agent comes with its own local view
of the process, while the overall behaviour is only be implicitly obtained
by composing such local views. In this paper, we provide for the first
time a formal framework for glocal conformance checking, where a global
observed trace of a multi-party process is related to local Data Petri nets,
each representing the subjective view of each participating agent. We for-
mulate conformance checking in this multi-agent setting as an alignment
problem, and show how it can be tackled by “acting locally, and think-
ing globally”, that is, pairing local alignments with a suitable global
compatibility condition. We then observe that in this setting, cost func-
tions must take the context of activities in the global trace into account,
which is realised through a new schema of regular expression-based cost
functions. We pair the foundational investigation of the problem with a
proof-of-concept SMT-based implementation.

Keywords: Conformance checking - collaborative processes * local
alignments - data Petri nets -+ SMT encodings

1 Introduction

Conformance checking is a central process mining task, in which observed pro-
cess executions are compared with the conduct prescribed by a reference process
model [3]. In this spectrum, alignment-based techniques have gained particular
attention, given their ability to provide, in the case of a non-conforming observed
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trace, fine-grained insights on where the trace deviates from the reference model.
This assumes that the model provides a monolithic, global description of the
expected behaviour. However, processes are typically jointly executed by multi-
ple actors or parties (called agents in this paper), each having a partial knowledge
of the overall process (see, e.g., [1,2,5,6]) or, in an interorganisational setting,
concurrently enacting interacting process components (see, e.g., [4,9,11,12]).

In fact, it may well be that a global process is not explicitly available, and that
each agent comes with its own local process, while the overall behaviour is only
implicit in the composition of these local views. In such a multi-agent setting,
when an execution does not evolve as expected, agents formulate hypotheses
about what could have gone wrong from their epistemic point of view, before
consolidating their local reconstructions, discarding those that are incompatible.
For example, suppose a customer sends an order cancellation to a seller, and later
unexpectedly receives the order from a carrier. The customer may hypothesize
that the carrier misbehaved, only to discover later, through knowledge consoli-
dation with the seller, that the seller forgot to withdraw the shipment.

In this paper, we provide for the first time a formal framework to tackle this
form of epistemic conformance checking, which we call glocal conformance check-
ing to reflect the need of “acting locally, and thinking globally”, as explained
next. From the modelling point of view, we consider the setting where local views
are described as Data Petri Nets (DPNs [10,13]) operating over overlapping
tasks, and complemented by the very general compatibility condition dictating
that local process views must agree on the execution of shared tasks. Notably,
this general condition reconstructs, in spirit, concrete compatibility conditions
such as those used to define the semantics of hybrid process models consisting of
procedural and declarative components that synchronise on common tasks [1].

Our first contribution is to formalise glocal conformance checking as an align-
ment problem, where the principle of “act locally, and think globally” is sub-
stantiated as follows: on the one hand, local process alignments are computed
on projections of the global observed trace, and on the other, they are subject to
global compatibility condition ensuring that they do not contradict each other
on shared tasks. As a second contribution, we observe that in this multi-agent
setting, cost functions for alignment deviations (due to model or log moves)
must take the context of activities in the global trace into account, to reflect
the fact that since agents have only partial knowledge of the overall process,
they are often constrained to act “bona fide”. To meet this requirement, we
put forward a new schema of regular expression-based cost functions, where the
cost of model and log moves in a given position ¢ of the global trace is defined
based on a regular expression evaluated over the prefix of that trace up to i.
Our last contribution is to pair this foundational investigation of the problem
with a proof-of-concept tool called GloCoMoT, based on Satisfiability Modulo
Theories (SMT). GloCoMoT builds on the CoCoMoT SMT-based framework for
data-aware alignments over (monolithic) DPNs [1], and lifts it to the setting of
glocal conformance checking combined with costs based on regular expressions.
This appears as a natural choice, given the fact that dealing with data requires



Glocal Conformance Checking 77

alternative techniques to the classical ones used for pure control-flow models,
such as those based on state-space exploration [16]. In fact, in the presence of
data such techniques would need to explore an infinite state space even when
the underlying process control-flow is bounded.

The paper is organised as follows. We start with a motivating example Sect. 2,
and the necessary preliminaries in Sect. 3. The technical framework of glocal
conformance is developed in Sect. 4, while context-dependent costs are tackled
in Sect. 5. Finally, before concluding, we report our implementation in Sect. 6.

2 DMotivating Example

We describe next a motivating example that illustrates the main characteristics
and challenges to be tackled when dealing with glocal conformance checking.

Example 1. Consider three agents Alice, Bob, and Carla, respectively playing the
roles of customer, seller, and carrier in an order-to-delivery process. Each agent
comes with a local process specification enacted by the role. Some activities are
local to an agent, while others may be shared with one or more other agents. In
the latter case, all the agents sharing the activity need to agree on its execution.

Specifically, Alice can order and pay for a product of price p; the product
is then delivered, unless she cancels, in which case she is refunded an amount
r. Bob receives the customer’s payment and prepares the order for shipment.
In the happy path, he gets a tracking id and is charged amount ¢ by the
carrier. If the customer cancels, Bob withdraws from the carrier and refunds
the customer; however, the refund is only partial if cancellation happens after
the tracking id was created, because in this case he is partially charged by
the carrier. Carla is notified about the prepared package, picks up the pack-
age, creates a tracking id, delivers the package, and charges Bob, the seller; in
case the seller withdraws, charging depends on whether pickup already hap-
pened. We formalise these processes as three distinct DPNs N4, Np, and N¢:
Alice:

i
pv >0 deliver (rv =p" —10)V (r* =p")
pay cance! refun
@ g O | fund O

o= pr
Bob: cancell—)O—)Iwithdrawl—)O—)l refundl
pvY >0 r =p"—10 v =10
prepare send tid|—> cancel|—>O—>|withdraw @
=20
charge
Carla:

@-prepare} >0 O—send tid|—O

withdraw

We assume that agents see only activities that occur in their process mod-
els, not the remaining ones (e.g., the activities visible to Alice are {pay,
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deliver, cancel, refund}). Moreover, suppose that every activity is triggered by
one agent, as indicated by the colors above: red for Alice, blue for Bob, green for
Carla. This is only for visualization purposes, and does not affect the semantics.
Consider now the following scenario where Alice cancelled the order but Bob
forgot to send a withdraw message to Carla, and the cancellation happened after
Carla had already picked up the package (which Alice cannot know about):
e = (pay {p — 100}, prepare, pickup, send tid, cancel, deliver, charge {¢ — 20})
If we filter e with respect to the activities that are visible to the individual
agents, we get the following three projections:

Alice: e = (pay {p — 100}, cancel, deliver)
Bob: ep = (pay {p — 100}, prepare, send tid, cancel, charge {¢ — 20})
Carla: ec = (prepare, pickup, send tid, deliver, charge {c — 20})

The agents can now check whether their respective projections on e indeed
conform to their own local processes. If not, they can compute local alignments
to understand which deviations occur, and where. However, in doing so, they
cannot arbitrarily operate in autonomy, only selecting alignments based on their
epistemic stance and minimisation of local distances. A further step is actually
needed, where the agents confront with each other to merge their local knowledge
into something that globally makes sense. Specifically, they should only retain
those local alignments that agree on what should have happened, that is, are
compatible with each other on the common tasks.

Let us now consider two possible sets of local alignments, each ensuring
compatibility. First, the agents may reconstruct that withdrawal should have
happened, corresponding to the alignments (1) below (the log component is
shown on top, data values omitted for readability). Another explanation is that
cancellation did not happen: then all other events can be perfectly matched (2):

Alice: Bob: Carla:
‘pay“cancelldeliver| > ‘ ‘paylpreparelsend tidlcancel| > | > |charge‘ ‘preparelpickup|send tid|de|iver| > |charge‘
[pay[cancel| > [refund| |pay|prepare[send tid|cancel|withdraw|refund|charge| |prepare|pickup|send tid] > |withdraw|charge]

(1)

‘pay“cancelldeliver‘ ‘paylpreparelsend tid |cance||charge‘ ‘prepare| pickuplsend tidldeliverlcharge‘ (2)
‘pay“ > |de|iver‘ ‘paylpveparelsend tidl > |charge‘ ‘preparelpickup|send tidldeliverlcharge‘

When evaluating which of these two sets of alignments is preferrable, one
may simply adopt the common approach to minimize the number of mismatches
(>>). Under this assumption, (2) has a smaller overall cost. However, this might
not be the preferred solution, because e.g. the analyst may want to express that
if payments are correctly recorded then so are cancellations, as both are triggered
by Alice. This would call for a refined definition of costs for Alice’s tasks, defined
based on the contexrt in which tasks occur in the log. For example, the analysis
could indicate that the cost of a log move on cancellation should be increased in
case it is applied in a position that comes after a payment.

The example points out the two main ingredients we need to account for
when dealing with conformance checking in such a distributed setting:



Glocal Conformance Checking 79

e We need to formally define how to project a global trace into local traces, and
how to reconcile local alignments based on a suitable notion of compatibility.

e We need to support flexible cost functions based on (regular) expressions
evaluated on the observed trace, taking position information into account.

The remainder of the paper is dedicated to devising a framework supporting
these two ingredients, in a formal and operational way.

3 Background and Preliminaries

We use Data Petri nets (DPNs) for modeling multi-perspective processes, adopt-
ing the same formalization as in [7,13]. We fix a set of sorts ¥ = {bool, int, rat}
with associated domains of booleans D(bool) = B, integers D(int) = Z, and
rationals D(rat) = Q. A set of process variables V' is sorted if there is a function
sort: V. — 3 assigning a sort to each variable v € V. For a set of variables V,
we consider two disjoint sets of annotated variables V" = {v" | v € V} and
V¥ ={v¥ | v € V'} to be respectively read and written by process activities, as
explained below, and we assume sort(v") = sort(v") = sort(v) for every v € V.
For a sort ¢ € ¥, V,, denotes the subset of V" U V¥ of annotated variables of
sort o. To manipulate variables, we consider expressions ¢ defined as follows:

ci=Vooor |B|nZ>n|r>r|r>r|cAc]|-c

ni=Vin |Z|n+n|—-n ri=Via | Q| r+7r]|—r

The set of constraints over variables V' is denoted C(V'); they are used for
read and write operations in process activities.

Definition 1 (DPN). 4 tuple N = (P, T, F,{, A, V, guard) is a Petri net with
data (DPN), where:

e (P, T,F,0) is a Petri net with two non-empty disjoint sets of places P and
transitions T, a flow relation F : (P x T) U (T x P) — N and a labeling
function £ : T — AU {7}, where A is a finite set of activity labels and T is a
special symbol denoting silent transitions;

o V is a set of typed process variables; and

e guard: T — C(V" UV"Y) is a guard assignment; for t € T with {(t) = T we
assume that guard(t) does not use variables in V.

Transition guards serve to simultaneously read and write variables. For
instance, a transition with guard (z" > 3) can only be taken if the current value
of variable z is greater than 3 (the superscript r indicates that the guard is on
the current, or read, variable). On the other hand, a guard (z% > 1) A (2" < 4)
requires that the current value of x is smaller than 4 and, at the same time, it
non-deterministically writes to « a new value that is greater than 1 (superscripts
w refer to written values). Note that transition guards with disjunctions like in
Example 1 can be simulated by using multiple transitions between the same
places.
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As customary, given x € PUT, we use *z := {y | F(y,xz) > 0} to denote
the preset of x and z*® := {y | F(x,y) > 0} to denote the postset of x. In order
to refer to the variables read and written by a transition ¢, we use the notations
read(t) = {v | v" € V4V (guard(t))} and write(t) = {v | v* € V4V (guard(t))}.

To represent the current values of variables, we consider a state variable
assignment, i.e., a (possibly partial) function « that assigns a value (of the right
type) to each variable in V. We denote by vDOM(«) the domain of a.. A state in a
DPN N is a pair (M, «) constituted by a marking M : P — N for the underlying
Petri net (P, T, F,{), plus a total state variable assignment «. Therefore, a state
simultaneously accounts for the control flow progress and for the current values
of all variables in V', as specified by a.. We fix one state (M7, o) as initial, where
M7 is the initial marking of the underlying Petri net and ay specifies the initial
value of all variables in V. Similarly, we denote the final marking as Mp, and
call final any state of the form (Mg, ap) for some ap.

A transition variable assignment is a partial function § with pom(8) C
V" UV™ that assigns a value to annotated variables, namely 8(x) € D(sort(z)),
with z € V" U V™. Transition variable assignments are used to specify how
variables change as the result of activity executions (cf. Definition 2).

We now define when a Petri net transition may fire from a given state.

Definition 2 (Transition firing). A transition t € T is enabled in state
(M, @) if there exists a transition variable assignment 3 such that:

e DOM(f) = VAV (guard(t)): B is defined for the variables in the guard;
o B(v") = a(v) for every v € read(t), i.e., B is as a for read variables;
o 3 E guard(t), i.e., B satisfies the guard; and

e M(p) > F(p,t) for every p € *t.

An enabled transition may fire, producing a new state (M', o), s.t. M'(p) =
M(p) — F(p,t) + F(t,p) for every p € P, and o'(v) = p(v™) for every v €
write(t), and o/ (v) = a(v) for every v & write(t). A pair (t,3) as above is called
(valid) transition firing, and we denote its firing by (M, o) &2, (M, o).

Informally, a transition firing between the current state (M, «) and the next
state (M’, ') is a couple (¢, 8) where: i) t € T' is a transition that is enabled in
the ‘token game’ sense of standard Petri nets; i7) § is a function connecting the
values of the read variables (matching the values assigned by « in the current
state) to the values of the write variables (matching the values assigned by o’ in
the next state); 4ii) 0 satisfies the guard associated to t. For Petri nets without
data variables, we omit 3 in transition firings for readability.

Based on this single-step transition firing, we say that a state (M’ ')
is reachable in a DPN with initial state (M, aqp) iff there exists a sequence
of valid transition firings of the form f = ((t1,01),...,(tn, Bn)) such that
(My, ) EuP0, - EnB) (A1 o). Such a sequence f is called a process run
of N if (M7, 00) £, (M, ar) for some ar, i.e., if the run leads to a final state.
For any kind of sequence x = (x1,...,2,) and 1 < i < n, we write x|; for the
prefix (x1,...,z;—1), and x|<; for (z1,...,2;). As in [7,14], we restrict to DPNs
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where a final state is reachable. We denote the set of transition firings of N by
F(N), and the set of process runs by Runs(N).

For instance, the three processes depicted in Example 1 are three different
DPNs, where the set of variables is V = {p, r, ¢}, all of type rat. Initial markings
are those where a single token is in the places marked by a token in the picture;
and final markings are the singleton markings where one token is in the place
marked by a double border. One could also consider the three nets as just one
big DPN, but in the sequel we will not adopt this view.

4 Glocal Conformance Checking

In this section, we formalise the problem of glocal conformance checking, dealing
with problems like the one explained in Sect. 2.

Global and Local Traces. We assume that a finite set A := {ay,...,an} of
n agents is given, and associate to each agent a; a process model N; specified
as a DPN. The set of all DPNs is abbreviated by N := {Ny,...,N,}. We
moreover assume that N; = (P;, Ty, Fy, 4, A;, V, guard,) for all i € {1,...,n},
with P,NP; =0 and T, NT; = 0 for 1 <i < j < n. Importantly:

e The sets A; of actions are not disjoint across agents. This is key in out app-
roach. Conceptually, when transitions of different DPNs are labelled by the
same action, then that action is shared among the agents associated to those
DPNs (in the epistemic sense formally captured later in Definition 3). Depend-
ing on how the different labelling functions ¢; are defined, we can thus capture
local actions, actions shared by some agents, and global actions shared by all.
We write A :=J;_, A; for the shared action vocabulary.

e All DPNs share the same set V' of process variables. Every DPN maintains
its own local assignment for such variables, consistently with the notion of
DPN state and transition firing defined before. Variables exclusively used by
a single agent, or by a subset of agents, can be seamlessly supported, by
ensuring that the DPNs of the other agents do not use them.

A good modelling principle is that whenever two agents operate over the
same variable, they write that variable only through actions they share, and
using exactly the same guard. This guarantees that whenever the variable gets
updated, all agents using that variable consistently update their own state. When
this modelling principle is respected, variables effectively behave like global vari-
ables.

Consider an agent, and a trace possibly containing actions not visible to that
agent. As a first fundamental building block, we need to define how the trace
gets projected into a local trace representing the epistemic view of the agent.
Let a global transition sequence be a sequence (fi, fa, ..., fm) such that each fy,
1<k<m, is a transition firing of some N}, i.e., there are My, M}, oy, a}, and
1<j <n such that (My, ax) L5, (M}, }) is a valid transition firing of N;. Note
that a global transition sequence is merely a sequence of tuples, we do not require
that the firings can be subsequently enabled in any model.
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Definition 3 (Run projection). Given a global transition sequence f =
(fi;-++, fm), the projection @, (f) of f on agent a; is the mazrimal subsequence
in the shared action set, i.e., the maximal subsequence (fi,,..., fr.) of £ such
that fr, = (tr, Br) and U(t,) € A;, for all1 <r <s.

For different DPNs to properly support the execution of common, global
traces over the overall set of actions occurring in those DPNs, we need to iden-
tify a suitable notion of compatibility. The literature abounds of frameworks
that deal with processes under the responsibility of different agents, tackling
their interoperability. A classical setting is the one where a monolithic process
model is decomposed into sub-components or views that are assigned to pro-
cess stakeholders, who are completely unaware of all the events pertaining tasks
that are not part of their own views [6,9]. This also connects back to a line of
research pursued to ensure the realisability of multi-party choreographic pro-
cesses, considering that they must be enacted in a decentralized way through
interaction of the parties, which in turn call for ensuring that they locally have
enough visibility of the current state of affairs when required to perform some
task [5,12]. In such a setting, open nets [2] can be used to tackle, bottom-up, the
construction of a global process from such local specifications through suitable
notions of compositions. In a more recent line of research, hybrid process models
have been put forward to handle the recurring situation where the same process
instance needs to simultaneously go through multiple, concurrent (data-aware)
processes [1]. When relating our setting to this long-standing literature, three
points deserve emphasis: (i) local DPNs are data-aware, a feature that is only
present in [1]; (%) local DPNs do not share places, while they may share tran-
sitions; (iii) to tackle glocal conformance checking, we are interested in traces,
and do not need to relate local DPNs to an explicit, global model (such as an
orchestrator or a choreography). With these three points in mind, we provide
next two suitable notions of compatibility.

Definition 4 (Compatibility). DPNs Ny,..., N, are

— weakly compatible if there is a global transition sequence f such that for all
J with 1<j <n, the projection @, (f) is a run of N;; and

- strongly compatible if for every run f € Runs(N;) and 1<i<n, there is a
global transition sequence f such that f coincides with @, (f) and for all j

o~

with 1 <j <n, the projection @, (f) is a run of N;.

Intuitively, weak compatibility demands that there is a combination of runs
from each DPN that is not contradictory. This, in turn, indicates that every
DPN has at least one local behaviour that can be suitably complemented by
compatible local behaviours of the other DPNs. However, under weak compat-
ibility not all runs in a local DPN may have corresponding compatible runs in
the others. This is instead what is guaranteed by the more restrictive notion of
strong compatibility: that every run of one of the DPNs can be embedded in
a global, combined run whose local projections can be executed by all DPNs.
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Note that since the set of runs Runs(lV;) is assumed to be nonempty for all N,
strong compatibility implies weak compatibility.

Definition 4 provides an abstract compatibility criterion that reconstructs: (i)
the execution semantics of hybrid models where process components synchronise
on their common actions [1]; (%) the composition semantics of open nets, in the
special case where nets only have common transitions and no open place.

Ezxample 2. The three Petri nets from Example 1 are strongly compatible: We
show this for runs of Alice, the other cases are similar. Two cases can be distin-
guished:

~ Any run of the form f; = (pay {p” ~— z}, deliver) of Ny, for some = €
Q, is embedded in the global sequence f; = (pay {p* +— x}, prepare, pickup,
send tid, deliver, charge {¢* +— 20}), which projects to runs for Bob and Carla.
— A run f5 = (pay {p* — z}, cancel, refund {p" — z,r" — y}) for some z,y € Q
is embedded in fg = (pay {p* — =x}, prepare, cancel, withdraw, refund {p"
z,r" — y}) which can be projected to valid runs for Bob and Carla as well.

We next give one counterexample to weak compatibility, and one example
that shows how compatibility can be hampered by data variables that are used
by two agents, but written in transitions visible to one agent, i.e., the above-
mentioned modelling principle is not followed.

Example 3. Consider three very simple Petri nets without data N7, Ny, N3 that
admit only a single run each, namely Runs(N7) = {(a,b)}, Runs(Nz2) = {(b,c)},
and Runs(N3) = {(c,a)}. While any two of them are strongly compatible, the
three of them are not even weakly compatible: IV requires that b happens after
a, and Ny that ¢ happens after b, but N3 that ¢ happens before a.

Ezample 4. Consider the following DPNs Ny, N, with integer data variable z:

Tl ol

0<a” <9 0<a”  av=a"+1 0<a¥<9 a¥=a"+1

They are weakly compatible due to the global transition sequence f = (d), but

not strongly. In fact, f is the only global transition sequence that projects to
runs for both agents: any other such sequence would need to have the form

(2 {2 = 1), (b, {2 1= 8}), (e, {a” = b2 o ¢+ 1))

for some 7,s,t € Z. However, to project to a run of Ny, we would need ¢ = s,
but for Ny we would need ¢ = r, which is impossible by the constraints. In fact,
by dropping transition d, the DPNs would not even be weakly compatible.

Next, we define the notion of event log. Given a set .S, we denote by S* the
set of sequences of elements from S. An event is a pair (b, ) for b € A an activity
label and « a (typically partial) state variable assignment, associating values to
variables in V.
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Definition 5 (Event log). Given a set £ of events, a log trace e € £* is a
sequence of events in € and an event log L is a multiset of log traces.

We say that a log trace L is local to agent a; (or to the DPN N;) if all the
activity labels in L are in A;. If a log trace e is not local to any agent in A
then e is a global log trace. Analogously, we call a global event log a multiset of
global log traces. Intuitively, a global event log is a multi-set of log traces that
correspond to the execution of activities of the global system emerging from the
(concurrent) executions of the single processes controlled by the different agents.

For instance, e in Example 1 is a global log trace, while e4, ep, and ec
are local to the respective agent. Contrary to standard conformance checking,
in our setting a global log trace cannot be compared to a global process model,
because no such model exists; and due to the presence of data, a global model
cannot be simply obtained as a cross-product of the local models. Therefore, we
compute alignments with respect to the local models, after projecting global log
traces to what the single agents can see. To this end, we proceed in three steps:
(i) we recall the standard notion of data-aware alignments for DPNs, (ii) we
use this notion to compute local alignments on trace projections, (iii) we fuse
local alignments into a global viewpoint through a compatibility criterion that
matches well the model-level one given in Definition 4, finally getting a “glocal”
result.

Standard Alignments. Standard conformance checking aims at constructing
an alignment of a given log trace e with respect to a given DPN N, by matching
events in e against transition firings in a process run. Since not every event can
be put in correspondence with a transition firing, a “skip” symbol > is used. Let
E> = EU{>} and the extended set of transition firings F(N)> = F(N)U{>}.

Given a DPN N and a set £ of events, a pair (e, f) € £Z x F(N)Z\{(>,>)}
is called a move. A move (e, f) is a log move if e € € and f =>>; a model move if
e=> and f € F(N); and a synchronous move if (e, f) € Ex F(N). Let Movesy
be the set of all moves. For a sequence of moves v = (e1, f1),..., (€m, fim),
the log and model projections are obtained by restricting to one component
and dropping > symbols. Precisely, the log projection ~y|, of «y is the maximal
subsequence e of (eq,...,en) such that e € £*; and the model projection ~|,,
of v is the maximal subsequence f of (f1,..., fn) such that f € F(N)*.

Definition 6 (Alignment). For a DPN N and a log trace e local to
N, a sequence of moves vy is an N-alignment if |, =e; it is complete if
Yy € Runs(N).

Note that the notion of N-alignment in Definition 6 depends on N, since
alignments can vary if different DPN models are considered.
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Ezample 5. Consider Example 1 and e4 = (pay {p — 100}, cancel, deliver). The
following sequences 7; and 7 are complete N4-alignments of e4:

__[payp— 100 [cancel[deliver] > ‘ __[payp— 100 [cancel[deliver]
= [pay p" — 100|cancel| > [refund ™ — 90| 2= [pay p — 100 > |deliver]

Here, alignments are depicted as tables where the cells in the top row correspond
to log trace events, and cells in the bottom row correspond to transitions in
the model run. Cells of trace events contain activity labels and event variable
assignments; in cells for model transitions we list the written variables (instead
of the entire transition variable assignment, for the sake of readability).

Given a log trace e local to N, Align(N,e) denotes the set of complete N-
alignments for a log trace e. A cost function is a mapping x: Movesy — RT
that assigns a cost to every move. This is naturally extended to alignments:

Definition 7 (Cost). Given N, e and v = (e1, f1), ..., (én, fn) € Align(N,e),
the cost of 7 is obtained by summing up the costs of its moves, that is, k(y) =
St k(es, fi). Moreover, v is optimal for e if k(7) is minimal among all com-
plete alignments for e, namely there is no v € Align(N,e) with k(v') < k(7).

Glocal Alignments. Next, we define local alignments by combining standard
alignments with log trace projections on the different agents.

Definition 8 (Log trace projection). Given a global log trace eq =
(€1,...,em), let the projection of ec on agent a; be @, (eq) = (€j,,...,¢€;.),
where (€j,,...,e;,) is the mazrimal subsequence of e such that for each h,
1<h<s, we have e;, = (b, ) and b is in the set A; of activity labels of agent a;.

In Example 1, e4, eg, and ec are projections of the global trace e to the
respective agent. Now given a global log trace e € Lg, we want to compute its
alignments considering one of the process models INV; for some agent a;. We call
this a local alignment of eg with respect to a;. For instance, the alignments in
Example 6 are local alignments of the global log trace e with respect to Alice.
Formally, we get:

Definition 9 (Local alignment). Given a global trace eg, Va, is called a local
alignment of eg with respect to agent a; if 74, 4s an N;-alignment of the pro-
jection @, (eq) on agent a;.

Since agents share actions, they can observe and interpret the alignments
done by others, by limiting themselves to those actions they know about.

Definition 10 (Alignment projection). For v = ((e1, f1),-.., (ém, fm)) @
local alignment of a global log trace eg with respect to agent a;, the projection
of v on agent a; is proj, () := @q; (7|y)-

The projection of a local alignment to agent a; thus selects all moves that
are also valid for agent a;. We are now able to define compatibility as a form of
“knowledge alignment”, dictating that two agents agree on two local alignments
they are respectively pondering, if the mutual projections are identical.
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Definition 11 (Compatible alignments). Two local alignments v,, for a;
and Yo, for a; are compatible if proj, (Ya,) = proja, (Va;)-

We extend this notion to sets of alignments and agents: given a log trace eq
and a set of alignments {71,...,7,} such that for all i, 1 <14 < n, v; is a local
alignment of agent a; and eg, we call this set compatible if they are pairwise
compatible. Since this set carries at once a local meaning for each agent, paired
with compatibility at the global level, we also call {71,...,v,} a glocal set of
alignments for eg and A in this case. Finally, we show that, if we start from
local DPNs that mutually agree on some shared action sequence (that is, they
are weakly compatible in the sense of Definition 4), then it is always possible
to find a glocal set of alignments (that is, local alignments that are pairwise
compatible in the sense of Definition 11).

Theorem 1. Let Ny,...,N, be weakly compatible DPNs, and eg a global log
trace. Then there is a glocal set of alignments {v1,..., v} for ec and N.

Proof. By weak compatibility, there exists a global transition sequence f such
that for all 4, 1<i<n, the projection @, (f) is a run of N;. For an agent

a;, 1<i<n, let ©a</f) = ((ti,1,Bi1)s - (timys Bim,)), and @ (eq) =

((ein, i), -, (€ik;»ik;)). Now consider the sequence of moves
Vi :‘ > | ‘ > [ein ia) [eik @ik, ]
U tia Bia|t T T B > T[> ]

By definition, ~; is a local alignment of eg with respect to a;, and it is com-
plete because @, (f) is a run of N;. To verify that v1,...,7v, is a glocal set of
alignments, it remains to show that for two agents a;, a;, the alignments y; and
7;j are compatible, that is, @, (vi|ar) = @, (v;|ar). By construction of v;, v;
from T, this is equivalent to @, (@, (f) = @,, (@, (F)), which holds because
both sides of the equation describe the maximal subsequence of f in which all
transitions have a label in 4; N A;. a

Ezample 6. Consider again Example 1 and the following three alignments 74,
~vB, and v¢ (where send tid is abbreviated to tid):

‘payp — 100 |cancel|de|iver‘ ‘payp — 100 |prepare|send tid |cance| |charge ci> 2[)‘ ‘prepare|pickup|send tid |deliver|charge c— 20 ‘
[pay p*—100] >> |deliver| |pay p"—100|prepare|sendtid| > |charge c"+—20| |prepare|pickup|send tid|deliver|charge c*'—20|

These are complete local alignments of e with respect to the three agents. We
have proj g (va) = proj 4(vs) = (pay{p" + 100}), and proj(va) = proj 4(vc) =
(deliver), and proj~(vB) = projg(vc) = (prepare, send tid, charge{c* — 20}), so
the alignments are compatible.

Theorem 1, based on weak compatibility, states only existence of a set of
glocal alignments, but gives no optimality guarantee, as the next example illus-
trates.

Ezample 7. Consider again Example 4, log trace eg=/{((a,{z—1}),
(c,{x—11})) and

>laz— 1llcx— 11

M=N=d > 1 > |

/f_faz=1 ] > Jea—11 |
72 T e o ibe o 10ca” - 1]
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Then ~v1, 72 form a glocal set of alignments, and all such sets have this shape
up to reordering moves. Let x assign cost 1 to log and model moves, and to
synchronous moves cost co in case of different labels, and cost 0 (resp. cost
1) if labels match but variables are assigned the same (resp. different) values.
Then k(71) = k(y2) = 3, but k(1) =k(v%) =1. In fact 71, 74 are optimal local
alignments, but do not form a glocal set. This shows that if DPNs are weakly
but not strongly compatible, glocal alignments can be suboptimal for all agents.

We conclude this section by showing that strong compatibility ensures exis-
tence of a glocal set of alignments that satisfies some (local) optimality guaran-
tee:

Theorem 2. Let Ny,..., N, be strongly compatible DPNs, ec a global log trace,
and 1 < k < n. Then there is a local alignment ; of eq with respect to agent
a;, for every i, 1 < i <n, such that vy, ...,V s a glocal set of alignments, and
Yk is optimal for @, (eq).

Proof. Let f, = vi|asr, which is a run of Ni. By strong compatibility, there exists
a global transition sequence f such that for all i, 1 <i<n, the projection @®,, (/f\)
is a run of N;, and fj, coincides with @, (?) For all ¢ such that 1 <i <n and
1 # k, one can define 7; as in the proof of Theorem 1, and the alignments are

compatible for the same reason. a

5 Context-Aware Cost Functions

We next delve into the second research question pertaining glocal conformance
checking, namely the design of cost functions that can flexibly prescribe different
costs of moves depending on their context in an alignment. To that end, we con-
sider the natural approach of defining context by a regular expression, evaluated
on the observed trace up to the considered instant (i.e., the trace prefix).

Regular Expressions. We recap regular expressions to fix notation. Let T’
be an alphabet, € the empty string, o denote string concatenation, and I'* the
set of finite strings over I'. The set of regular expressions over I', denoted by
RE(T), is defined by the grammar e::=€ | a | . | eoe | e + e | e* where
a€T.For ABCT* let AoB={aob|a€ Aandb € B}. The language
L(e) of a regular expression e is given by L(€) = {e}, L(a) = {a}, L(.) =T,
L(e1oez) = L(e1)oL(e2), L(e1+e2) = L(e1) UL(e2), and L(e*) = Uy>¢ L(er),
where £(e*) is inductively defined by £(e®) = {e} and L(e**1) = L(e) o L(e¥).
We usually omit the concatenation operator for succinctness.

Let again A be the joint activity vocabulary of all agents, and V' their set of
process variables. Below, we will consider regular expressions over the alphabet
' = A x C(V). Though the alphabet is in general infinite, only finitely many
symbols occur in the relevant regular expressions, so that we will in fact be able
to work with a finite alphabet. For instance, the following are regular expressions
in RE(A x C(V)), for A and C(V') as in Example 1:
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e ¢ = .*(pay, T).*(refund, p=w) describes an event sequence containing a pay
event later followed by a refund event where the entire payment is refunded;

e ¢o = ((pay,p>100)(cancel, T).)* captures sequences made of an arbitrary
number of subsequences that start with a payment larger than 100 directly
followed by cancellation, followed by some arbitrary events.

For readability, we write below —a for a € A for the regular expression
(a1, T)+...+(ax, T)if A\{a} = {a1,...,ax}. Moreover, we call a regular expres-
sion r single-letter if either r € TU{.}, or r = 1 41y for single-letter expressions
71, T2. Obviously, single-letter expressions match only words of length 1.

Cost Patterns. Next, we define cost patterns to capture prefixes of traces. The
intuition is the following. We are scanning the observed trace (projection), to
understand how it aligns with a given DPN. We are in position ¢, pondering a
model or log move on event e. To define the cost of such a move, we inspect the
prefix of the log trace up to position ¢, matching it against a regular expression
that defines the relevant context for that move when assigning a given cost to
it. Different contexts can be then linked to different costs for the same move. To
this end, an event (b, &) matches a tuple (a,¢) € AxC(V) if a =b and « | ¢,
i.e., the activity labels coincide and the state variable assignment « satisfies the
constraint ¢. Accordingly, a sequence (e1,...,e,) of events matches sequence
((a1,¢1), ..y (an,cn)) € (Ax C(V))* if m =n and e; matches (a;, ¢;) for all 7.

Definition 12 (Alignment cost scheme). A cost pattern is a triple P =
(r,p, k) where r € RE(A x C(V)), p is a single-letter reqular expression over
AxC(V), and k € Qx¢ U {o0}. An alignment cost scheme is a triple II =
(AL, A, d) where A, Ay are lists of cost patterns, and d € Q>0 U {oo}.

E.g., for e; = .*(pay, T).*(refund, p=w), the tuple (e, (cancel, T),100) is a
cost pattern. We say that an event sequence (ey,...,e,) with m>1 matches
cost pattern P = (r,p, k) if {eq,...,e;,n—1) matches r and e,, matches p. Finally,
an alignment cost scheme defines the following cost function:

Definition 13 (Context-dependent cost). An alignment cost scheme II =
(AL, Apr,d) induces the context-dependent cost function kp: For vy =
(e1, 1)y, (€i—1, fi—1), (&4, fi) a sequence of moves, i > 1, the cost kri(e;, f;) of
move (e;, f;) is as follows:

o If (ei, fi) is a log move and (r,p, k) is the first pattern in Ap that matches
v<il; then ku(es, fi) = k; if no pattern matches then xu(e;, f;) = d.

o If (e, fi) is a model move and (r,p, k) is the first pattern in Ay that matches
v<il;, then ku(es, fi) = k; if no pattern matches then ku(e;, f;) = d.

o If (e, f;) is a synchronous move, e; = (b, ), fi = (t;,5:), £(t;) =b and a(v) =
B(w™) for all v € DOM(«) then kr(e;, fi) = 0, otherwise k(e fi) = oo.

Finally, k()= Z?:l K (my).

For instance, for any k& € N, the pattern P, = (.*,., k) matches every trace
and assigns cost 1. So the very simple alignment cost scheme ([P;],[P], o0)
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assigns cost 1 to all log moves and 2 to all model moves: for example, in 4
from Example 6, this alignment cost scheme would assign cost 1 to log move
(cancel, >>), where the log prefix (pay,p = 100) is the context of (cancel, ().

One may wonder why we do not evaluate the context against the alignment
prefix, instead of the observed trace prefix. The reason is twofold. First, align-
ments are hypotheses on what should have happened, while the observed trace
provides factual knowledge. Second, alignments are chosen based on move costs,
hence our approach is consequential: given an observed trace, we are able, in
principle, to compute all the move costs, then using them to ponder the overall
costs of alignments. This could be seen as a stance in line with the “in log we
trust” motto from [15]. Here, this simply means that we trust that what we have
in the log has been effectively recorded, and thus provides a factual context for
defining costs. However, it does not imply that the recording is faithful to reality.

We next revisit Example 1 and show how context-dependent cost functions
can be used to achieve the desired notion of an optimal alignment.

Example 8. We assume that the logging system is reliable but agents may fail
to behave according to the normative process. A high cost for a particular move
expresses here that the respective misbehaviour is severe, but cost oo that it only
happens if there is no other choice. Hence, we accept alignments with cost co only
if there is no better solution. In this setting an optimal alignment is an apologetic
scenario that explains how agents misbehaved the least. We define different cost
functions for Alice, Bob, and Carla, and for every agent, moves have cost 0 if they
use an activity which is not triggered by themselves: let thus PX” = (.*, deliver+
refund, 0) for Alice, PR’ = (.*, pay + cancel + send tid + charge, 0) for Bob, and
PZb = (.*, prepare +withdraw, 0) for Carla (where the superscript nb abbreviates
not my business). Moreover, for Alice we fix cost oo for log moves with cancel
that are not preceded by deliver, to reflect the duty of customers to abstain
from cancellations after delivery; let thus P§ = ((—deliver)*, cancel, co). For Bob,
model moves with withdraw have cost 100 if the log contains a cancellation that
is not followed by withdrawal, so let P§ = (-*cancel(—withdraw)*, withdraw, 100).
When using the cost schemata

Iy = <[P2b’P2L [Plllb]a 1> Il = <[P§b]’ [Pgbvpg]v 1> o= <[Pgb]’ [Pgb]’ 1>

for alignments (1), we get cost 0 for Alice, 101 for Bob, and 2 for Carla, so 103
in total; for alignments (2), we get cost oo for Alice, and 0 for Bob and Carla,
so oo in total. Thus alignments (1) are preferable (and optimal).

Ezxample 9. Consider a payment process where a seller, Bob, sends a bill to a
customer, Alice, who is supposed to pay. However, payments do not always suc-
ceed, so Bob might not know about them. If he believes to not have received a
payment, he sends reminders, until Alice sends an email response with a pay-
ment confirmation. This is modelled by the below DPNs for Bob (left, triggered
activities in blue) and Alice (right, activities in red). Here, kp is an “epistemic”
variable that indicates whether Bob knows about Alice’s payment; it is non-
deterministically written by the constraint k% =7 of pay:



90 A. Burigana et al.

kb =7 kp=T
Ol
O O
kg =T k=T
The DPNs are weakly compatible. Consider trace e = (bill,pay{kp —

1}, reminder) with eg = e4 = e, admitting the following two pairs of com-
patible alignments v5 1,741 and yp 2,74,2 for Bob and Alice, respectively:

__|bill]pay {kp — L} |reminder > \ __|billjpay {kp — L}|reminder
Bl = bill|pay {kp — T }|reminder|process payment‘ YAl = bill|pay {kB — T }|reminder

__|bill{pay {k5 — L}|reminder > ‘ __|billjpay {kp ~— _L}|reminder > ‘
B2 = bill|pay {ks — L} |reminder|response {kp — T}‘ VA2 = bill|pay {kp — L}|reminder|response {kp — T}‘

When assigning cost 1 for every log and model move, as well as the synchronous
pay move with mismatching data, we have k(yp1)=2 and k(y4,1)=1; and
k(vB,2) =1 and k(ya,2) =1, hence little difference with respect to alignment
cost. However, the first alignment pair seriously changes the course of action, in
that, for the alignments to be compatible, it is required to change kg — T in
the pay action, to make the model move with process payment possible.

Instead, let IIp = ([], [P, PP¥],1) with P =(.* response,0), and PP¥ =
(.*, process payment, 100), expressing that response has no cost for Bob as it is
triggered by Alice and process payment model moves have high cost. For Alice,
Iy = ([Prest, Pres?] [],1) with Pres! = (.*(pay, ~kp)reminder, response, 1) and
Pres2 = ((-reminder)*, response, 100), expressing that response model moves
have low cost after pay with kg = L and a subsequent reminder, but high cost if
no reminder occurred. This reflects that, if Alice receives a reminder after pay-
ment, she knows that Bob is not aware of her payment. Then x(yp 1,7v4,1) =102
and k(vp,2,74,2) =1, 80 ¥p2,74,2 are clearly preferred.

6 Implementation

We implemented our approach on top of the data-aware conformance checker
CoCoMoT, a command-line tool written in Python, that uses SMT encodings
to find optimal alignments for DPNs [7]. This is a natural choice considering
that, in our setting, agents employ data-aware processes. In the restricted case
where agents use pure control-flow Petri nets without data, other alignment-
based conformance checking approaches may be explored, such as those based
on synchronous products [3]. In the sequel, we refer to our extended tool as
GloCoMoT (https://bitbucket.org/gconformance/glocal). In contrast to CoCo-
MoT, (i) besides the global trace, GloCoMoT takes n DPNs Ny, ..., N, as input,
and searches for alignments 71, ..., for each model, using a similar approach
as in standard CoCoMoT, ensuring in addition that 71,...,7, are compatible
(Definition 11). (ii) In addition, GloCoMoT takes n alignment cost schemes (Def-
inition 12) as input, one for each DPN, and uses the resulting cost functions in
the encoding. Below, we describe these two changes on the implementation level.

Compatibility Encoding. We encode compatibility for each pair of alignments v;, y;
of agents a;, a; with activity sets A;, A; separately. In the CoCoMoT encoding [7],
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variables St ... 2 and S{, e Si_ encode the transition sequences of agent a;
and a;, respectively. For 7; = £(S}), .. (8}, ) and 0; = £(S7), .. . £(8y,,) the respec-
tive sequences of labels, we encode compatibility by encoding the length L of the
longest common subsequence of £; and Zj7 and check whether L equals the number
of labels in ¢; that are in Aj, and the number of labels in Zj in A;.

Context-Dependent Cost Functions. GloCoMoT parses alignment cost schemes
from command line arguments, and encodes them in log move penalty Pr, and
model move penalty Py (cf. [7, Def. 11]): Given an alignment cost schema IT =
(AL,An,d), a log trace € = (e,...,e,) and a process run £ = (f1,..., fx),
Py (i) returns the cost of a log move with e;, and Pps(i,7) the cost of a model
move with f; in an alignment where ey, .. ., e; is the prefix of the log trace already
consumed. The encodings of P;, and Py are denoted by [P] and [Pyy]. For Py,
given A, = (r1,p1,d1), ..., (ri, pi, di), we set [Pp]; = dg if ¢ is the smallest number
such that r, matches (eq,...,e;—1) and p; matches e;, or [Pr]; =d otherwise.
For Py, one needs to encode a case distinction. Let (ri,p1,d1), ..., (7o, Po, do)
be all patterns in A such that r, matches (eq, ..., e;) for all 1 <a <o. Then we
set [Parli; = ite(matches((Sj,%X;),p1),d1, ... ite(matches((Sj,%;), Do), do,d) .. .)
where matches((S;,X;),p) simply encodes that for p = (a, ¢), the label of 8, is a
and the data variables X; satisfy the constraint c. We tested our implementation
on the examples in this paper; all test files are available in the repository.

7 Conclusions

We proposed a foundational framework, paired with a proof-of-concept imple-
mentation, for conformance checking in the common setting where process agents
come with their “local” knowledge of the process. Local alignments formulated
by agents may contradict each other, so we define a suitable compatibility condi-
tion for what we call “glocal” conformance. In this setting, it is especially useful
to define the cost of moves depending on their context in the trace, for which
we propose a new regular expression-based approach.

Our framework provides the first stepping stone towards epistemic confor-
mance, in which subjective knowledge of process stakeholders is taken in con-
sideration. In particular, we believe our contribution provides a solid basis to
extract, from glocal alignments, explanations and root causes for alignments.
Along this line, we intend to refine the framework by differentiating visibility
and ownership about the execution of activities. We also plan to explore settings
where agent processes can not only interact synchronously on common actions,
but must obey global contractual/choreography /interaction rules, which calls for
refining the compatibility notion used here. Moreover, the compatibility notions
introduced here to guarantee the existence of glocal alignments are undecidable
to check for general DPNs; it would be worth studying whether they become
decidable for DPNs with finite summary [8].
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